SpringBoot整合sharding-jdbc:水平分库、水平分表

  |   0 评论   |   0 浏览

image-20200914150832944 如遇图片加载失败,可尝试使用手机流量访问

前言

前文中,测试到了单库下的水平分表;水平分表其实已经可以解决大部分的数据库压力了,但是往往单机是会存在性能瓶颈的,所以,当出现数据量大,访问频率高的时候,往往就会出现单机器的CPU、内存高负荷的情况;因此,就会在基于单库的水平分表基础上去考虑水平分库、水平分表;这样将数据分散再多台机器的多个表中;从而降低单机器的硬件性能压力;

需求

模拟电商系统中,基于店铺id的水平分库,基于商品id的水平分表

  • 数据库结构

    ## 商品信息表
    DROP TABLE IF EXISTS `product_info1`;
    CREATE TABLE `product_info1`  (
      `product_id` bigint(20) NOT NULL COMMENT '商品ID',
      `product_title` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '商品标题',
      `product_desc` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '商品描述',
      `product_price` decimal(10, 2) NULL DEFAULT NULL COMMENT '商品价格',
      `shop_id` bigint(20) NULL DEFAULT NULL COMMENT '店铺id',
      PRIMARY KEY (`product_id`) USING BTREE
    ) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
    
    DROP TABLE IF EXISTS `product_info2`;
    CREATE TABLE `product_info2`  (
      `product_id` bigint(20) NOT NULL COMMENT '商品ID',
      `product_title` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '商品标题',
      `product_desc` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '商品描述',
      `product_price` decimal(10, 2) NULL DEFAULT NULL COMMENT '商品价格',
      `shop_id` bigint(20) NULL DEFAULT NULL COMMENT '店铺id',
      PRIMARY KEY (`product_id`) USING BTREE
    ) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
    
    ## 点破信息表
    DROP TABLE IF EXISTS `shop_info1`;
    CREATE TABLE `shop_info1`  (
      `shop_id` bigint(20) NOT NULL COMMENT '店铺id',
      `shop_name` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '店铺名称',
      `shop_desc` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '店铺描述',
      `shop_type` int(2) NULL DEFAULT NULL COMMENT '店铺的类型 目前用于对店铺类型进行分表的一句',
      PRIMARY KEY (`shop_id`) USING BTREE
    ) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
    
    DROP TABLE IF EXISTS `shop_info2`;
    CREATE TABLE `shop_info2`  (
      `shop_id` bigint(20) NOT NULL COMMENT '店铺id',
      `shop_name` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '店铺名称',
      `shop_desc` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '店铺描述',
      `shop_type` int(2) NULL DEFAULT NULL COMMENT '店铺的类型 目前用于对店铺类型进行分表的一句',
      PRIMARY KEY (`shop_id`) USING BTREE
    ) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
    
    # 共享表 广播表
    # 店铺类型
    DROP TABLE IF EXISTS `shop_type_info`;
    CREATE TABLE `shop_type_info`  (
      `type_id` int(11) NOT NULL COMMENT '店铺类型',
      `type_name` varchar(255) CHARACTER SET utf8 COLLATE utf8_general_ci NULL DEFAULT NULL COMMENT '类型名称',
      PRIMARY KEY (`type_id`) USING BTREE
    ) ENGINE = InnoDB CHARACTER SET = utf8 COLLATE = utf8_general_ci ROW_FORMAT = Dynamic;
    

    image-20200913233456667 如遇图片加载失败,可尝试使用手机流量访问

SpringBoot整合

依赖
<!-- sharding-jdbc整合spring的依赖 -->
<dependency>
    <groupId>org.apache.shardingsphere</groupId>
    <artifactId>sharding-jdbc-spring-boot-starter</artifactId>
    <version>4.0.0-RC1</version>
</dependency>
<!-- mybatis -->
<dependency>
    <groupId>org.mybatis.spring.boot</groupId>
    <artifactId>mybatis-spring-boot-starter</artifactId>
    <version>2.0.0</version>
</dependency>
<!-- mysql 数据库连接 -->
<dependency>
    <groupId>mysql</groupId>
    <artifactId>mysql-connector-java</artifactId>
    <version>5.1.47</version>
</dependency>
<dependency>
    <groupId>com.alibaba</groupId>
    <artifactId>druid</artifactId>
    <version>1.1.16</version>
</dependency>
使用generator生成mybatis的映射信息

可参考博客: https://blog.csdn.net/lupengfei1009/article/details/87986987

image-20200913235909700 如遇图片加载失败,可尝试使用手机流量访问

启动类添加mybaitis的扫描

记得根据你实际的地址填写

@MapperScan("com.lupf")

配置sharding-jdbc的分库分表策略

  • 策略说明

    1. 所有的商品优先以店铺id进行水平分库
    2. 到库之后,所有商品根据id进行水平分表
    3. 店铺信息到库之后,根据店铺类型进行水平分表
    4. 店铺类型为共享表

    最终要实现的效果如下

    image-20200914152457802 如遇图片加载失败,可尝试使用手机流量访问

  • properties配置

    mybatis.mapper-locations=classpath:mapping/*.xml
    server.port=7777
    
    # 设置数据源
    spring.shardingsphere.datasource.names=db0,db1
    
    # db0的基本信息 这里的db0要和上面的配置要保持一直
    spring.shardingsphere.datasource.db0.url=jdbc:mysql://192.168.1.221:3306/db0?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&failOverReadOnly=false&maxReconnects=15000&allowMultiQueries=true&useSSL=false
    spring.shardingsphere.datasource.db0.username=root
    spring.shardingsphere.datasource.db0.password=123456
    spring.shardingsphere.datasource.db0.type=com.alibaba.druid.pool.DruidDataSource
    spring.shardingsphere.datasource.db0.driver-class-name=com.mysql.jdbc.Driver
    
    # db1的基本信息 这里的db1要和上面的配置要保持一直
    # 这里是将两个库都放置在了一个mysql中,正常的实际开发中是不会这么做的
    spring.shardingsphere.datasource.db1.url=jdbc:mysql://192.168.1.221:3306/db1?useUnicode=true&characterEncoding=UTF-8&autoReconnect=true&failOverReadOnly=false&maxReconnects=15000&allowMultiQueries=true&useSSL=false
    spring.shardingsphere.datasource.db1.username=root
    spring.shardingsphere.datasource.db1.password=123456
    spring.shardingsphere.datasource.db1.type=com.alibaba.druid.pool.DruidDataSource
    spring.shardingsphere.datasource.db1.driver-class-name=com.mysql.jdbc.Driver
    
    # 设置数据库分库的表达式
    spring.shardingsphere.sharding.default-database-strategy.inline.algorithm-expression=db$->{shop_id % 2}
    spring.shardingsphere.sharding.default-database-strategy.inline.sharding-column=shop_id
    
    # 指定分表的规则
    # db$->{0..1}指明库的取值范围 db0和db1 会根据上面给定的规则,计算出库名 如果没有传递shop_id 这里会报错
    # product_info$->{0..1}指明了表的取值范围product_info0和product_info1;会根据下面给的运输规则$->{product_id % 2 + 1}得到
    spring.shardingsphere.sharding.tables.product_info.actual-data-nodes=db$->{0..1}.product_info$->{0..1}
    spring.shardingsphere.sharding.tables.product_info.key-generator.column=product_id
    spring.shardingsphere.sharding.tables.product_info.key-generator.type=SNOWFLAKE
    spring.shardingsphere.sharding.tables.product_info.table-strategy.inline.algorithm-expression=product_info$->{product_id % 2 + 1}
    spring.shardingsphere.sharding.tables.product_info.table-strategy.inline.sharding-column=product_id
    
    spring.shardingsphere.sharding.tables.shop_info.actual-data-nodes=db$->{0..1}.shop_info$->{0..1}
    spring.shardingsphere.sharding.tables.shop_info.key-generator.column=shop_id
    spring.shardingsphere.sharding.tables.shop_info.key-generator.type=SNOWFLAKE
    spring.shardingsphere.sharding.tables.shop_info.table-strategy.inline.algorithm-expression=shop_info$->{shop_type % 2 + 1}
    spring.shardingsphere.sharding.tables.shop_info.table-strategy.inline.sharding-column=shop_type
    
    # 用户表,这里不进行分库,直接将数据保存在db0中
    spring.shardingsphere.sharding.tables.user_info.actual-data-nodes=db0.user_info$->{0..1}
    spring.shardingsphere.sharding.tables.user_info.key-generator.column=user_id
    spring.shardingsphere.sharding.tables.user_info.key-generator.type=SNOWFLAKE
    spring.shardingsphere.sharding.tables.user_info.table-strategy.inline.algorithm-expression=user_info$->{user_id % 2 + 1}
    spring.shardingsphere.sharding.tables.user_info.table-strategy.inline.sharding-column=user_id
    
    ## 指明广播表 公共表
    spring.shardingsphere.sharding.broadcast-tables=shop_type_info
    
    spring.shardingsphere.props.sql.show=true
    

测试

广播表的操作
  • 插入

    @Resource
    ShopTypeInfoPOMapper shopTypeInfoPOMapper;
    
    @Test
    public void insert(){
        ShopTypeInfoPO shopTypeInfoPO = new ShopTypeInfoPO();
        shopTypeInfoPO.setTypeId(1);
        shopTypeInfoPO.setTypeName("普通店铺");
        shopTypeInfoPOMapper.insert(shopTypeInfoPO);
    }
    

    测试日志

    : Logic SQL: insert into shop_type_info (type_id, type_name) values (?, ?)
    : Actual SQL: db0 ::: insert into shop_type_info  (type_id, type_name) VALUES (?, ?) ::: [1, 普通店铺]
    : Actual SQL: db1 ::: insert into shop_type_info  (type_id, type_name) VALUES (?, ?) ::: [1, 普通店铺]
    

    发现其往两个库里面同时插入了相同的数据

店铺表测试
  • 分发策略

    1. 根据shop_id分发到不同的库
    2. 到库之后,根据不同的类型分发到表
  • 去掉insert中的shop_id字段

    <insert id="insert" parameterType="com.lupf.tmall02.po.ShopInfoPO">
      insert into shop_info (shop_name, shop_desc,
        shop_type)
      values (#{shopName,jdbcType=VARCHAR}, #{shopDesc,jdbcType=VARCHAR},
        #{shopType,jdbcType=INTEGER})
    </insert>
    
  • 插入

    @Resource
    ShopInfoPOMapper shopInfoPOMapper;
    
    @Test
    public void insert(){
        Random random = new Random();
        for (int i = 0; i < 10; i++) {
            ShopInfoPO shopInfoPO = new ShopInfoPO();
            //shopInfoPO.setShopId(0L);
            shopInfoPO.setShopName("店铺名称");
            shopInfoPO.setShopDesc("店铺描述");
            shopInfoPO.setShopType(random.nextInt(2)+1);
            shopInfoPOMapper.insert(shopInfoPO);
        }
    }
    

    image-20200914001425599 如遇图片加载失败,可尝试使用手机流量访问

商品表测试
  • 分发策略

    1. 根据店铺id进行水平分库
    2. 到库之后,根据商品id进行水平分表
  • 去掉insert中的product_id字段

    <insert id="insert" parameterType="com.lupf.tmall02.po.ProductInfoPO">
      insert into product_info ( product_title, product_desc,
        product_price, shop_id)
      values (#{productTitle,jdbcType=VARCHAR}, #{productDesc,jdbcType=VARCHAR},
        #{productPrice,jdbcType=DECIMAL}, #{shopId,jdbcType=BIGINT})
    </insert>
    
  • 测试用例

    @Resource
    ProductInfoPOMapper productInfoPOMapper;
    
    @Test
    public void insert(){
        Random random = new Random();
        // 所有当前已经插入的店铺的id
        Long[] shopIds = new Long[]{
                511978980161617920l,
                511978980304224256l,
                511978980430053376l,
                511978980073537536l,
                511978980232921088l,
                511978980270669825l,
                511978979788324865l,
                511978980094509057l,
                511978980203560961l,
                511978980396498945l
        };
    
        for (int i=0;i<100;i++) {
            ProductInfoPO productInfoPO = new ProductInfoPO();
            //productInfoPO.setProductId(0L);
            productInfoPO.setProductTitle("商品名称");
            productInfoPO.setProductDesc("商品描述");
            productInfoPO.setProductPrice(new BigDecimal(random.nextInt(1000)));
            productInfoPO.setShopId(shopIds[random.nextInt(shopIds.length)]);
            productInfoPOMapper.insert(productInfoPO);
        }
    }
    

    image-20200914002550435 如遇图片加载失败,可尝试使用手机流量访问

链合查询测试

  • Join
    • 不带条件

      select s.shop_id,COUNT(*) from shop_info as s LEFT JOIN product_info as p  on s.shop_id=p.shop_id GROUP BY s.shop_i
      

      操作日志

      : Actual SQL: db1 ::: select s.shop_id,COUNT(*) from shop_info1 as s LEFT JOIN product_info1 as p  on s.shop_id=p.shop_id GROUP BY s.shop_id ORDER BY shop_id ASC
      : Actual SQL: db1 ::: select s.shop_id,COUNT(*) from shop_info1 as s LEFT JOIN product_info2 as p  on s.shop_id=p.shop_id GROUP BY s.shop_id ORDER BY shop_id ASC
      : Actual SQL: db1 ::: select s.shop_id,COUNT(*) from shop_info2 as s LEFT JOIN product_info1 as p  on s.shop_id=p.shop_id GROUP BY s.shop_id ORDER BY shop_id ASC
      : Actual SQL: db1 ::: select s.shop_id,COUNT(*) from shop_info2 as s LEFT JOIN product_info2 as p  on s.shop_id=p.shop_id GROUP BY s.shop_id ORDER BY shop_id ASC
      : Actual SQL: db0 ::: select s.shop_id,COUNT(*) from shop_info1 as s LEFT JOIN product_info1 as p  on s.shop_id=p.shop_id GROUP BY s.shop_id ORDER BY shop_id ASC
      : Actual SQL: db0 ::: select s.shop_id,COUNT(*) from shop_info1 as s LEFT JOIN product_info2 as p  on s.shop_id=p.shop_id GROUP BY s.shop_id ORDER BY shop_id ASC
      : Actual SQL: db0 ::: select s.shop_id,COUNT(*) from shop_info2 as s LEFT JOIN product_info1 as p  on s.shop_id=p.shop_id GROUP BY s.shop_id ORDER BY shop_id ASC
      : Actual SQL: db0 ::: select s.shop_id,COUNT(*) from shop_info2 as s LEFT JOIN product_info2 as p  on s.shop_id=p.shop_id GROUP BY s.shop_id ORDER BY shop_id ASC
      

      由于没有任何条件,所以穷举的各个库各个表的各种情况

    • 主表带分库条件

      select s.shop_id,COUNT(*) from shop_info as s LEFT JOIN product_info as p  on s.shop_id=p.shop_id where s.shop_id=1 and s.shop_type=1 GROUP BY s.shop_id
      

      日志

      : Actual SQL: db1 ::: select s.shop_id,COUNT(*) from shop_info1 as s LEFT JOIN product_info1 as p  on s.shop_id=p.shop_id where s.shop_id=1 GROUP BY s.shop_id ORDER BY shop_id ASC 
      : Actual SQL: db1 ::: select s.shop_id,COUNT(*) from shop_info1 as s LEFT JOIN product_info2 as p  on s.shop_id=p.shop_id where s.shop_id=1 GROUP BY s.shop_id ORDER BY shop_id ASC 
      : Actual SQL: db1 ::: select s.shop_id,COUNT(*) from shop_info2 as s LEFT JOIN product_info1 as p  on s.shop_id=p.shop_id where s.shop_id=1 GROUP BY s.shop_id ORDER BY shop_id ASC 
      : Actual SQL: db1 ::: select s.shop_id,COUNT(*) from shop_info2 as s LEFT JOIN product_info2 as p  on s.shop_id=p.shop_id where s.shop_id=1 GROUP BY s.shop_id ORDER BY shop_id ASC
      

      由于带了分库参数,所以就只关联了db1库中的表

    • 主表带分库、分表

      select s.shop_id,COUNT(*) from shop_info as s LEFT JOIN product_info as p  on s.shop_id=p.shop_id where s.shop_id=1 and s.shop_type=1 and p.product_id=1 GROUP BY s.shop_id
      

      日志

      : Actual SQL: db1 ::: select s.shop_id,COUNT(*) from shop_info2 as s LEFT JOIN product_info1 as p  on s.shop_id=p.shop_id where s.shop_id=1 and s.shop_type=1 GROUP BY s.shop_id ORDER BY shop_id ASC
      : Actual SQL: db1 ::: select s.shop_id,COUNT(*) from shop_info2 as s LEFT JOIN product_info2 as p  on s.shop_id=p.shop_id where s.shop_id=1 and s.shop_type=1 GROUP BY s.shop_id ORDER BY shop_id ASC
      

      由于带了主表分库分表的字段,所以就只会使用主表和其他表进行关联

    • 主表,副表都带分库、分表字段

      select s.shop_id,COUNT(*) from shop_info as s LEFT JOIN product_info as p  on s.shop_id=p.shop_id where s.shop_id=1 and s.shop_type=1 and p.product_id=1 GROUP BY s.shop_id
      

      日志

      Actual SQL: db1 ::: select s.shop_id,COUNT(*) from shop_info2 as s LEFT JOIN product_info2 as p  on s.shop_id=p.shop_id where s.shop_id=1 and s.shop_type=1 and p.product_id=1 GROUP BY s.shop_id
      

      由于条件可以明确的定位到主表和副表分别对应了那张表的数据,因此就只会使用对应表的数据进行关联

其实和单库的水平分表没有什么区别;唯一麻烦的就是sharding-jdbc的分片规则更加复杂了,只要配置好了分片规则,对于上层应用来说,完全是透明的。



标题:SpringBoot整合sharding-jdbc:水平分库、水平分表
作者:码霸霸
地址:https://blog.lupf.cn/articles/2020/09/14/1600068985256.html